4.7 Article

Theory of the Many-Body Localization Transition in One-Dimensional Systems

期刊

PHYSICAL REVIEW X
卷 5, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.5.031032

关键词

-

资金

  1. Aspen Center for Physics under NSF [1066293]
  2. ERC Grant [UQUAM]
  3. ISF Grant [1594/11]
  4. Minerva Foundation

向作者/读者索取更多资源

We formulate a theory of the many-body localization transition based on a novel real-space renormalization group (RG) approach. The results of this theory are corroborated and intuitively explained with a phenomenological effective description of the critical point and of the badly conducting state found near the critical point on the delocalized side. The theory leads to the following sharp predictions: (i) The delocalized state established near the transition is a Griffiths phase, which exhibits subdiffusive transport of conserved quantities and sub-ballistic spreading of entanglement. The anomalous diffusion exponent alpha < 1/2 vanishes continuously at the critical point. The system does thermalize in this Griffiths phase. (ii) The many-body localization transition is controlled by a new kind of infinite-randomness RG fixed point, where the broadly distributed scaling variable is closely related to the eigenstate entanglement entropy. Dynamically, the entanglement grows as similar to log t at the critical point, as it does in the localized phase. (iii) In the vicinity of the critical point, the ratio of the entanglement entropy to the thermal entropy and its variance (and, in fact, all moments) are scaling functions of L/xi, where L is the length of the system and xi is the correlation length, which has a power-law divergence at the critical point.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据