4.2 Article

Platelet-Rich Fibrin is a Bioscaffold and Reservoir of Growth Factors for Tissue Regeneration

期刊

TISSUE ENGINEERING PART A
卷 17, 期 3-4, 页码 349-359

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2010.0327

关键词

-

资金

  1. Korea government (MEST) [2009-0066366]

向作者/读者索取更多资源

The platelet-rich fibrin (PRF) is known as a rich source of autologous cytokines and growth factors and universally used for tissue regeneration in current clinical medicine. However, the microstructure of PRF has not been fully investigated nor have been studied the key molecules that differ PRF from platelet-rich plasma. We fabricated PRF under Choukroun's protocol and produced its extract (PRFe) by freezing at -80 degrees C. The conventional histological, immunohistological staining, and scanning electron microscopy images showed the microstructure of PRF, appearing as two zones, the zone of platelets and the zone of fibrin, which resembled a mesh containing blood cells. The PRFe increased proliferation, migration, and promoted differentiation of the human alveolar bone marrow stem cells (hABMSCs) at 0.5% concentration in vitro. From the results of proteome array, matrix metalloproteinase 9 (MMP9) and Serpin E1 were detected especially in PRFe but not in concentrated platelet-rich plasma. Simultaneous elevation of MMP9, CD44, and transforming growth factor beta-1 receptor was shown at 0.5% PRFe treatment to the hABMSC in immunoblot. Mineralization assay showed that MMP9 directly regulated mineralization differentiation of hABMSC. Transplantation of the fresh PRF into the mouse calvarias enhanced regeneration of the critical-sized defect. Our results strongly support the new characteristics of PRF as a bioscaffold and reservoir of growth factors for tissue regeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据