4.2 Article

Crosslinking and Mechanical Properties Significantly Influence Cell Attachment, Proliferation, and Migration Within Collagen Glycosaminoglycan Scaffolds

期刊

TISSUE ENGINEERING PART A
卷 17, 期 9-10, 页码 1201-1208

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2010.0590

关键词

-

资金

  1. Science Foundation Ireland [04/Yl1/B531]
  2. HRB in Ireland [PHD/2007/11]

向作者/读者索取更多资源

Crosslinking and the resultant changes in mechanical properties have been shown to influence cellular activity within collagen biomaterials. With this in mind, we sought to determine the effects of crosslinking on both the compressive modulus of collagen-glycosaminoglycan scaffolds and the activity of osteoblasts seeded within them. Dehydrothermal, 1-ethyl-3-3-dimethyl aminopropyl carbodiimide and glutaraldehyde crosslinking treatments were first investigated for their effect on the compressive modulus of the scaffolds. After this, the most promising treatments were used to study the effects of crosslinking on cellular attachment, proliferation, and infiltration. Our experiments have demonstrated that a wide range of scaffold compressive moduli can be attained by varying the parameters of the crosslinking treatments. 1-Ethyl-3-3-dimethyl aminopropyl carbodiimide and glutaraldehyde treatments produced the stiffest scaffolds (fourfold increase when compared to dehydrothermal crosslinking). When cells were seeded onto the scaffolds, the stiffest scaffolds also showed increased cell number and enhanced cellular distribution when compared to the other groups. Taken together, these results indicate that crosslinking can be used to produce collagen-glycosaminoglycan scaffolds with a range of compressive moduli, and that increased stiffness enhances cellular activity within the scaffolds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据