4.2 Article

Effect of Micro- and Macroporosity of Bone Tissue Three-Dimensional-Poly(ε-Caprolactone) Scaffold on Human Mesenchymal Stem Cells Invasion, Proliferation, and Differentiation In Vitro

期刊

TISSUE ENGINEERING PART A
卷 16, 期 8, 页码 2661-2673

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2009.0494

关键词

-

资金

  1. Italian Ministry of Health, TISSUENET [RBPR05RSM2]

向作者/读者索取更多资源

The design of porous scaffolds able to promote and guide cell proliferation, colonization, and biosynthesis in three dimensions is key determinant in bone tissue engineering (bTE). The aim of this study was to assess the role of the micro-architecture of poly(epsilon-caprolactone) scaffolds in affecting human mesenchymal stem cells' (hMSCs) spatial organization, proliferation, and osteogenic differentiation in vitro. Poly(epsilon-caprolactone) scaffolds for bTE and characterized by mono-modal and bi-modal pore size distributions were prepared by the combination of gas foaming and selective polymer extraction from co-continuous blends. The topological properties of the pore structure of the scaffolds were analyzed and the results correlated with the ability of hMSCs to proliferate, infiltrate, and differentiate in vitro in three dimensions. Results showed that the micro-architecture of the pore structure of the scaffolds plays a crucial role in defining cell seeding efficiency as well as hMSCs' three-dimensional colonization, proliferation, and osteogenic differentiation. Taken all together, our results indicated that process technologies able to allow a fine-tune of the topological properties of biodegradable porous scaffolds are essential for bTE strategies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据