4.2 Article

Enhanced Biomineralization in Osteoblasts on a Novel Electrospun Biocomposite Nanofibrous Substrate of Hydroxyapatite/Collagen/Chitosan

期刊

TISSUE ENGINEERING PART A
卷 16, 期 6, 页码 1949-1960

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2009.0221

关键词

-

资金

  1. Life Science Institute, National University of Singapore, Singapore
  2. Medical Research Council [G0701836] Funding Source: researchfish
  3. MRC [G0701836] Funding Source: UKRI

向作者/读者索取更多资源

Electrospun chitosan (CTS)-based hydroxyapatite (HAp)/CTS biocomposite nanofibers for bone tissue engineering could afford a close biomimicry to the fibrous nanostructure and constituents of the hierarchically organized natural bone, but their biological performance is somewhat deficient compared with the HAp/collagen (Col) biocomposite system. This necessitates doping the electrospun HAp/CTS hybrid with the bioactive component of Col. We show herein that Col-doped HAp/CTS biocomposite (i.e., HAp/Col/CTS) containing 27.8 wt% HAp nanoparticles, 7.2 wt% Col, and 57.8 wt% CTS can be successfully electrospun into nanofibrous form through using small amount (7.2 wt%) of ultrahigh-molecular-weight poly(ethylene oxide) as the fiber-forming additive. Morphology, structure, composition, and mechanical properties of the electrospun HAp/Col/CTS scaffolds were examined by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy, and tensile tests, respectively. Human fetal osteoblasts on the nanofibrous HAp/Col/CTS scaffolds were cultured for up to 15 days to assess the cell-scaffold interaction and biomineralization effect. In comparison with different controls, significant increments in osteoblast proliferation, alkaline phosphatase expression, and mineral deposition were observed. Results obtained thus highlight that introduction of Col can significantly enhance the biological performance of osteoblasts on the CTS-based nanofibrous substrates and suggest that current electrospun HAp/Col/CTS biocomposite, as a highly biomimetic and bioactive nanofibrous structure, may be one of the most attractive candidates for various osteoregeneration-related applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据