4.2 Article

Osteogenic Differentiation Influences Stem Cell Migration Out of Scaffold-Free Microspheres

期刊

TISSUE ENGINEERING PART A
卷 16, 期 2, 页码 759-766

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2009.0131

关键词

-

资金

  1. DFG [HA 3228/2-1]

向作者/读者索取更多资源

Complete bone regeneration of critical-size defects frequently fail because of the use of acellular bone substitutes and because of partially negative influences of artificial scaffolds. However, the supply of cells to critical-size defects is essential for the regeneration. Therefore, engineered scaffold-free tissues, with outgrowing cells that fill up spaces in the bony defect, are promising candidates for bone regeneration approaches. Here, we demonstrate such a scaffold-free tissue construct (microspheres) that, if osteogenic differentiated, mineralizes while maintaining the capability to let cells grow out of the united cell structure. A superior outgrowth capability of microspheres composed of human cord blood-derived unrestricted somatic stem cells compared with murine embryonic stem cells was found and a time-dependent reduction in outgrowth was evident in vitro. Even after 5 days of osteoinduction and strong mineralization, the cells migrate out of the microsphere. As migration of cells out of unrestricted somatic stem cell microspheres was also found in extracellular matrix gel, we suggest that cells would migrate also in vivo. Thus, microspheres could serve as the scaffold and the source of osteogenic cells in future bone regeneration approaches. Further, microspheres permit the precise administration of large amount of cells into an area of interest.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据