4.2 Article

Evaluation of Bone Regeneration with an Injectable, In Situ Polymerizable Pluronic® F127 Hydrogel Derivative Combined with Autologous Mesenchymal Stem Cells in a Goat Tibia Defect Model

期刊

TISSUE ENGINEERING PART A
卷 16, 期 2, 页码 617-627

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2009.0418

关键词

-

向作者/读者索取更多资源

In situ forming bone substitute materials are attractive candidates for filling irregularly shaped defects. In this study, a chemically modified form of the Pluronic (R) F127 hydrogel was used. Similar to the parent form, this derivative underwent a sol-gel transition in the body and additional radical curing resulted in a stable three-dimensional network gel with a controllable degradation rate. An extra cell source of autologous bone marrow-derived mesenchymal stem cells was mixed with the hydrogel to increase the ossification process, when implanted in noncritical size unicortical tibia defects. These cells were cultured and predifferentiated on two types of cell carrier systems, that is, gelatin CultiSpher-S (R) microcarriers and hydroxyapatite tubular carriers. Radiographic and histological evaluation revealed that bone regeneration was comparable in the defects with the bone substitute compositions and the untreated control defects at 2 and 4 weeks postimplantation and that newly formed bone originated from the cells on the CultiSpher-S carriers. This resulted, 6 and 8 weeks postimplantation, in faster bone repair in the defects filled with the hydrogel plus CultiSpher-S carriers in comparison to the control defects. Surprisingly, there was no formation of new bone originating from the hydroxyapatite carriers. The hydrogel by itself seemed to stimulate the natural repair process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据