4.2 Article

Collagen Type II Enhances Chondrogenesis in Adipose Tissue-Derived Stem Cells by Affecting Cell Shape

期刊

TISSUE ENGINEERING PART A
卷 16, 期 1, 页码 81-90

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2009.0222

关键词

-

资金

  1. Dutch Tissue Engineering Program (DPTE) [BGT.6734]

向作者/读者索取更多资源

Ideally, biomaterials have inductive properties, favoring specific lineage differentiation. For chondrogenic induction, these properties have been attributed to collagen type II. However, the underlying mechanisms are largely unknown. This study aimed to investigate whether collagen type II favors chondrogenic induction by affecting cell shape through beta 1 integrins and Rho A/Rock signaling. For this purpose, adipose tissue-derived stem cells (ASCs) were encapsulated in collagen type I or II gels and cultured in plain and chondrogenic medium. It was demonstrated that (i) ASCs showed more efficient chondrogenic induction (higher collagen X, aggrecan, sox6, sox9, and collagen II gene expression) in both plain and chondrogenic media in collagen type II versus collagen type I gels; (ii) ASCs showed lower Rock 2 gene expression and a more rounded cell shape in collagen type II versus type I gels when grown in plain medium; (iii) Rock inhibitor (Y27632) more effectively enhanced chondrogenic gene expression of ASCs in collagen type I than in collagen type II gels, and diminished differences in chondrogenic gene expression and cell shape of ASCs between the two gel types; and (iv) beta 1 integrins blocking not only reduced the differences of chondrogenic gene expression but also eliminated the differences of Rock 1 and Rock 2 gene expressions and cell shape when comparing ASCs embedded in collagen type I and II gels. We conclude that collagen type II provides the inductive signaling for chondrogenic differentiation in ASCs by evoking a round cell shape through beta 1 integrin-mediated Rho A/Rock signaling pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据