4.2 Article

Inkjet-Mediated Gene Transfection into Living Cells Combined with Targeted Delivery

期刊

TISSUE ENGINEERING PART A
卷 15, 期 1, 页码 95-101

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2008.0095

关键词

-

向作者/读者索取更多资源

In this study a novel method of simultaneous gene transfection and cell delivery based on inkjet printing technology is described. Plasmids encoding green fluorescent protein (GFP) were coprinted with living cells (porcine aortic endothelial [PAE] cells) through the ink cartridge nozzles of modified commercial inkjet printers. Agarose gel electrophoresis analysis showed there was no obvious structural alteration or damage to these plasmids after printing. Transfection efficiency of the printed cells, determined by GFP expression, was over 10%, and post-transfection cell viability was over 90%. We showed that printing conditions, such as plasmid concentration, cartridge model, and plasmid size, influenced gene transfection efficiency. Moreover, genetically modified PAE cells were accurately delivered to target sites within a three-dimensional fibrin gel scaffold and expressed GFP in vitro and in vivo when implanted into mice. These results demonstrate that inkjet printing technology is able to simultaneously transfect genes into cells as well as precisely deliver these cell populations to target sites. This technology may facilitate the development of effective cell-based therapies by combining gene therapy with living cells that can be delivered to target sites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据