4.2 Article

Composite Chitosan/Nano-Hydroxyapatite Scaffolds Induce Osteocalcin Production by Osteoblasts In Vitro and Support Bone Formation In Vivo

期刊

TISSUE ENGINEERING PART A
卷 15, 期 9, 页码 2571-2579

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2008.0054

关键词

-

向作者/读者索取更多资源

There is a significant clinical need to develop alternatives to autografts and allografts for bone grafting procedures. Porous, biodegradable scaffolds based on the biopolymer chitosan have been investigated as bone graft substitutes, and the addition of calcium phosphate to these scaffolds has been shown to improve the mechanical properties of the scaffold and may increase osteoconductivity. In this study, in vitro mineralization was examined for osteoblasts seeded in a porous scaffold composed of fused chitosan/nano-hydroxyapatite microspheres. Human fetal osteoblasts were cultured on composite and chitosan scaffolds for 21 days. On days 1, 4, 7, 14, and 21, total dsDNA, alkaline phosphatase, type I collagen, and osteocalcin production were measured. Total cellularity (measured by dsDNA), alkaline phosphatase, and type I collagen production were similar between the two scaffold groups. However, osteocalcin production occurred significantly earlier (day 7 vs. day 21) and was more than three times greater (0.0022 vs. 0.0068 ng/mL/ng DNA) on day 21 when osteoblasts were cultured on composite scaffolds. Osteocalcin is a marker of late osteoblastic differentiation and mineralized bone matrix formation. Therefore, the increase in osteocalcin production seen when cells were cultured on composite scaffolds may indicate that these scaffolds were superior to chitosan-only scaffolds in facilitating osteoblast mineralization. Composite scaffolds were also shown to be biocompatible and osteoconductive in a preliminary critical size rat calvarial defect study. These results demonstrate the potential of composite chitosan/nanohydroxyapatite scaffolds to be used in bone tissue engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据