4.4 Article

Regulation of STEP61 and tyrosine-phosphorylation of NMDA and AMPA receptors during homeostatic synaptic plasticity

期刊

MOLECULAR BRAIN
卷 8, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/s13041-015-0148-4

关键词

STEP; GluN2B; GluA2; Tyrosine phosphorylation; Tetrodotoxin; Bicuculline; Hippocampal neurons; Homeostatic plasticity; Synaptic scaling

资金

  1. University of Illinois at Urbana Champaign
  2. Epilepsy Foundation Predoctoral Fellowship
  3. NIH [MH052711, MH091037]

向作者/读者索取更多资源

Background: Sustained changes in network activity cause homeostatic synaptic plasticity in part by altering the postsynaptic accumulation of N-methyl-D-aspartate receptors (NMDAR) and alpha-amino-3-hydroxyle-5-methyl-4-isoxazolepropionic acid receptors (AMPAR), which are primary mediators of excitatory synaptic transmission. A key trafficking modulator of NMDAR and AMPAR is STriatal-Enriched protein tyrosine Phosphatase (STEP61) that opposes synaptic strengthening through dephosphorylation of NMDAR subunit GluN2B and AMPAR subunit GluA2. However, the role of STEP61 in homeostatic synaptic plasticity is unknown. Findings: We demonstrate here that prolonged activity blockade leads to synaptic scaling, and a concurrent decrease in STEP61 level and activity in rat dissociated hippocampal cultured neurons. Consistent with STEP61 reduction, prolonged activity blockade enhances the tyrosine phosphorylation of GluN2B and GluA2 whereas increasing STEP61 activity blocks this regulation and synaptic scaling. Conversely, prolonged activity enhancement increases STEP61 level and activity, and reduces the tyrosine phosphorylation and level of GluN2B as well as GluA2 expression in a STEP61-dependent manner. Conclusions: Given that STEP61-mediated dephosphorylation of GluN2B and GluA2 leads to their internalization, our results collectively suggest that activity-dependent regulation of STEP61 and its substrates GluN2B and GluA2 may contribute to homeostatic stabilization of excitatory synapses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据