4.4 Article Proceedings Paper

Band gap change induced by defect complexes in Cu2ZnSnS4

期刊

THIN SOLID FILMS
卷 535, 期 -, 页码 265-269

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.tsf.2012.10.030

关键词

CuZnSnS4; Kesterite; Band structure; Defect complex; First-principles

向作者/读者索取更多资源

Understanding the impact on the electronic and optical properties of kesterite Cu2ZnSn(S,Se)(4) due to the presence of native defects is crucial for designing and manufacturing efficient solar cells. In this work, we complement earlier published theoretical studies by investigating the change in the Cu2ZnSnS4 band gap energy induced by the dominating isovalent (Zn (Cu) + Cu-Zn) and (Zn-Cu + V-Cu) defect complexes and the corresponding larger [(Zn-Cu + Cu-Zn)+(Zn-Cu + V-Cu)] complex. The study is based on the generalized gradient approximation with corrections for on-site Coulomb interactions (GGA + U) and the Heyd-Scuseria-Ernzerh hybrid functional method (HSE06) within the first-principles density functional theory. We find that (Zn-Cu + Cu-Zn) and (Zn-Cu + V-Cu) affect the band gap energies in an opposite way: (Zn-Cu + Cu-Zn) decreases the gap whereas (Zn-Cu + V-Cu) increases the gap. However, there is a strong correlation between these two defect complexes. The presence of the Cu-poor (Zn-Cu + V-Cu) defect complex lowers the formation energy of the antisite (Zn-Cu + Cu-Zn) defect complex in close configuration, and vice versa. Thereby, and considering the opposite effect on the band gap for (Zn-Cu + Cu-Zn) and (Zn-Cu + V-Cu), our results indicate that the band gap energy will be compensated and stabilized in Cu-poor Cu2ZnSnS4. We discuss the underlying mechanisms behind the band gap physics of the considered isovalent defect complexes. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据