4.4 Article

Toughness enhancement in TiAlN-based quarternary alloys

期刊

THIN SOLID FILMS
卷 520, 期 11, 页码 4080-4088

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.tsf.2012.01.030

关键词

Nitrides; Titanium aluminum nitride; Hardness; Toughness; Ductility; Density Functional Theory; Metals; Quarternaries

资金

  1. Swedish Research Council (VR)
  2. Swedish Strategic Research Foundation (SSF)

向作者/读者索取更多资源

Improved toughness in hard and superhard thin films is a primary requirement for present day ceramic hard coatings, known to be prone to brittle failure during in-use conditions. We use density functional theory calculations to investigate a number of (TiAl)(1-x)MxN thin films in the B1 structure, with 0.06 <= x <= 0.75 obtained by alloying TiAlN with M = V, Nb, Ta, Mo and W. Results show significant ductility enhancements, hence increased toughness, in these compounds. Importantly, these thin films are also predicted to be superhard, with similar or increased hardness values, compared to Ti0.5Al0.5 N. For (TiAl)(1-x)WxN the results are experimentally confirmed. The ductility increase originates in the enhanced occupancy of d-t(2g) metallic states, induced by the valence electrons of substitutional elements (V, Nb, Ta, Mo, W). This effect is more pronounced with increasing valence electron concentration, and, upon shearing, leads to the formation of a layered electronic structure in the compound material, consisting of alternating layers of high and low charge density in the metallic sublattice, which in turn, allows a selective response to normal and shear stresses. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据