4.4 Review

The Mn+1AXn phases: Materials science and thin-film processing

期刊

THIN SOLID FILMS
卷 518, 期 8, 页码 1851-1878

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.tsf.2009.07.184

关键词

Nanolaminate; Ti3SiC2; Ti2AlC; Physical vapor deposition; Sputtering; Carbides; Ceramics

资金

  1. Swedish Research Council
  2. Swedish Foundation for Strategic Research
  3. Swedish Agency for Innovation Systems

向作者/读者索取更多资源

This article is a Critical review of the M(n + 1)AX(n) phases (MAX phases, where n = 1, 2, or 3) from a materials science perspective. MAX phases are a class of hexagonal-structure ternary carbides and nitrides (X) of a transition metal (M) and an A-group element. The most well known are Ti2AlC, Ti3SiC2, and Ti4AlN3. There are similar to 60 MAX phases with at least 9 discovered in the last five years alone. What makes the MAX phases fascinating and potentially useful is their remarkable combination of chemical, physical, electrical, and mechanical properties, which in many ways combine the characteristics of metals and ceramics. For example, MAX phases are typically resistant to oxidation and corrosion, elastically stiff, but at the same time they exhibit high thermal and electrical conductivities and are machinable. These properties stem from an inherently nanolaminated crystal structure, with M1 + nXn slabs intercalated with pure A-element layers. The research on MAX phases has been accelerated by the introduction of thin-film processing methods. Magnetron sputtering and arc deposition have been employed to synthesize single-crystal material by epitaxial growth, which enables studies of fundamental material properties. However, the surface-initiated decomposition of M(n + 1)AX(n) thin films into MX compounds at temperatures of 1000-1100 degrees C is much lower than the decomposition temperatures typically reported for the corresponding bulk material. We also review the prospects for low-temperature synthesis, which is essential for deposition of MAX phases onto technologically important substrates. While deposition of MAX phases from the archetypical Ti-Si-C and Ti-Al-N systems typically requires synthesis temperatures of similar to 800 degrees C, recent results have demonstrated that V2GeC and Cr2AlC can be deposited at similar to 450 degrees C. Also, thermal spray of Ti2AlC powder has been used to produce thick coatings. We further treat progress in the use of first-principle calculations for predicting hypothetical MAX phases and their properties. Together with advances in processing and materials analysis, this progress has led to recent discoveries of numerous new MAX phases such as Ti4SiC3, Ta4AlC3. and Ti3SnC2. Finally, important future research directions are discussed. These include charting the unknown regions in phase diagrams to discover new equilibrium and metastable phases, as well as research challenges in understanding their physical properties, such as the effects of anisotropy, impurities, and vacancies on the electrical properties, and unexplored properties such as Superconductivity, magnetism, and optics. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据