4.3 Article

Geometric inhomogeneous random graphs

期刊

THEORETICAL COMPUTER SCIENCE
卷 760, 期 -, 页码 35-54

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.tcs.2018.08.014

关键词

Real-world networks; Random graph models; Hyperbolic random graphs; Sampling algorithms; Compression algorithms; Clustering coefficient

向作者/读者索取更多资源

Real-world networks, like social networks or the internet infrastructure, have structural properties such as large clustering coefficients that can best be described in terms of an underlying geometry. This is why the focus of the literature on theoretical models for real-world networks shifted from classic models without geometry, such as Chung-Lu random graphs, to modern geometry-based models, such as hyperbolic random graphs. With this paper we contribute to the theoretical analysis of these modern, more realistic random graph models. Instead of studying directly hyperbolic random graphs, we use a generalization that we call geometric inhomogeneous random graphs (GIRGs). Since we ignore constant factors in the edge probabilities, GIRGs are technically simpler (specifically, we avoid hyperbolic cosines), while preserving the qualitative behavior of hyperbolic random graphs, and we suggest to replace hyperbolic random graphs by this new model in future theoretical studies. We prove the following fundamental structural and algorithmic results on GIRGs. (1) We provide a sampling algorithm that generates a random graph from our model in expected linear time, improving the best-known sampling algorithm for hyperbolic random graphs by a substantial factor O (root n). (2) We establish that GIRGs have clustering coefficients in Omega(1), (3) we prove that GIRGs have small separators, i.e., it suffices to delete a sublinear number of edges to break the giant component into two large pieces, and (4) we show how to compress GIRGs using an expected linear number of bits. (C) 2018 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据