4.2 Article

Active Mixing Inside Double Emulsion Segments in Continuous Flow

期刊

JOURNAL OF FLOW CHEMISTRY
卷 5, 期 2, 页码 101-109

出版社

AKADEMIAI KIADO RT
DOI: 10.1556/1846.2015.00011

关键词

double emulsion; segmented flow; active mixing; continuous flow; g-force; droplet circulation

向作者/读者索取更多资源

Fast mixing is essential for many microfluidic applications, especially for flow at low Reynolds numbers. A capillary tubein-tube coaxial flow setup in combination with a glass microreactor was used to produce immiscible multiphase segments. These double emulsion segments are composed of an organic solvent as the shell (outer) phase and a completely fluorinated liquid (Fluorinert (R) FC-40) as the core (inner) phase. Due to the higher density of the core droplets, they are responsive to changing their position to the force of gravity (g-force). By gently shaking or jiggling the reactor, the core drop flows very fast in the direction of the g-field without leaving the shell organic phase segment. Furthermore, by shaking or jiggling the reactor, the inner droplet moves along the phase boundary of the shell segment and continuous phase. Computational fluid dynamics (CFD) calculations show an enhancement of the internal circulations, i.e., causing an exceptional mixing inside of the shell segment. For reactions which are limited by mass transfer, where the conversion significantly increases with improved mixing, these recirculation zones are decisive because they also accelerate the mixing process. With a common phase-transfer catalytic (PTC) etherification of phenol with dimethyl sulphate, a remarkable increase of yield (85% gas chromatography [GC]) could be achieved by applying active mixing within a segment in continuous flow.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据