4.2 Article

An application of double exponential formula to radial quadrature grid in density functional calculation

期刊

THEORETICAL CHEMISTRY ACCOUNTS
卷 130, 期 4-6, 页码 645-669

出版社

SPRINGER
DOI: 10.1007/s00214-011-0985-x

关键词

Double exponential formula; Numerical integration; Radial quadrature grid; Electron-counting integral; Density functional calculation

向作者/读者索取更多资源

We report an application of the double exponential formula to the numerical integration of the radial electron distribution function for atomic and diatomic molecular systems with a quadrature grid. Three types of mapping transformation in the double exponential formula are introduced into the radial quadrature scheme to generate new radial grids. The double exponential grids are examined for the electron-counting integrals of He, Ne, Ar, and Kr atoms which include occupied orbitals up to the 4p shell. The performance of radial grid is compared for the double exponential formula and the formulas proposed in earlier studies. We mainly focus our attention on the behavior of accuracy by the quadrature estimation for each radial grid with varying the mapping parameter and the number of grid points. The convergence behavior of the radial grids with high accuracy for atomic system are also examined for the electron-counting integrals of LiH, NaH, KH, Li(2), Na(2), K(2), HF, HCl, HBr, F(2), Cl(2), Br(2), LiF, NaCl, KBr, [ScH](+), [MnH](+), and [CuH](+) molecules. The results reveal that fast convergence of the integrated values to the exact value is achieved by applying the double exponential formula. It is demonstrated that the double exponential grids show similar or higher accuracies than the other grids particularly for the Kr atom, Br(2) molecule, alkali metal hydrides, alkali metal halogenides, and transition metal hydride cations, suggesting that the double exponential transformations have potential ability to improve the reliability and efficiency of the numerical integration for energy functionals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据