4.7 Article

Constructing a dense genetic linkage map and mapping QTL for the traits of flower development in Brassica carinata

期刊

THEORETICAL AND APPLIED GENETICS
卷 127, 期 7, 页码 1593-1605

出版社

SPRINGER
DOI: 10.1007/s00122-014-2321-z

关键词

-

资金

  1. National Science Foundation of China [31100876]
  2. National 111 project [B07041]
  3. National Key Laboratory of Crop Genetic Improvement [ZK201212]
  4. NSW Agricultural Genomics Centre - NSW Government under BioFirst Initiative
  5. NSW Agricultural Genomics Centre - NSW Government under GRDC [DAN117]

向作者/读者索取更多资源

An integrated dense genetic linkage map was constructed in a B. carinata population and used for comparative genome analysis and QTL identification for flowering time. An integrated dense linkage map of Brassica carinata (BBCC) was constructed in a doubled haploid population based on DArT-Seq(TM) markers. A total of 4,031 markers corresponding to 1,366 unique loci were mapped including 639 bins, covering a genetic distance of 2,048 cM. We identified 136 blocks and islands conserved in Brassicaceae, which showed a feature of hexaploidisation representing the suggested ancestral crucifer karyotype. The B and C genome of B. carinata shared 85 % of commonly conserved blocks with the B genome of B. nigra/B. juncea and 80 % of commonly conserved blocks with the C genome of B. napus, and shown frequent structural rearrangements such as insertions and inversions. Up to 24 quantitative trait loci (QTL) for flowering and budding time were identified in the DH population. Of these QTL, one consistent QTL (qFT.B4-2) for flowering time was identified in all of the environments in the J block of the B4 linkage group, where a group of genes for flowering time were aligned in A. thaliana. Another major QTL for flowering time under a winter-cropped environment was detected in the E block of C6, where the BnFT-C6 gene was previously localised in B. napus. This high-density map would be useful not only to reveal the genetic variation in the species with QTL analysis and genome sequencing, but also for other applications such as marker-assisted selection and genomic selection, for the African mustard improvement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据