4.7 Article

Evaluation of near-isogenic lines for drought resistance QTL and fine mapping of a locus affecting flag leaf width, spikelet number, and root volume in rice

期刊

THEORETICAL AND APPLIED GENETICS
卷 123, 期 5, 页码 815-826

出版社

SPRINGER
DOI: 10.1007/s00122-011-1629-1

关键词

-

资金

  1. National Natural Science Foundation of China [30725021, 30830071, 30921091]
  2. National Special Key Project of China on Functional Genomics of Major Plants and Animals [2006AA10A103]
  3. National Green Super Rice Project [2010AA101805]
  4. Bill & Melinda Gates Foundation

向作者/读者索取更多资源

Drought stress is a major limiting factor for crop production and breeding for drought resistance is very challenging due to the complex nature of this trait. Previous studies in rice suggest that the upland japonica variety IRAT109 shows better drought resistance than the lowland indica variety Zhenshan 97. Numerous quantitative trait loci (QTL) have been previously mapped using a recombinant inbred line population derived from these two genotypes. In this study, near-isogenic lines (NILs) for 17 drought resistance-related QTL were constructed and phenotypic variations of these NILs were investigated under drought and normal conditions. Fourteen of these NILs showed significant phenotypic differences relative to the recurrent parent under at least one of the conditions and nine NILs showed significant differences under both conditions. After eliminating the effect of heading date on drought resistance, only four NILs carrying seven QTL (four for the same grain yield-related traits and three for the same or similar root traits QTL) showed differences consistent with the original QTL mapping results. One of these lines (N19) contains qFSR4, a QTL on chromosome 4 controlling root volume per tiller and co-segregating with flag leaf width and spikelet number per panicle. Using a population derived from N19, qFSR4 was mapped to a 38-kb region containing three open reading frames including the previously characterized NARROW LEAF 1 (NAL1) gene. NAL1, which controls leaf width and also affects vein patterning and polar auxin transport, is the most promising candidate genes for qFSR4. Our results underscore the importance of the development of NILs to confirm the identification of QTL affecting complex traits such as drought resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据