4.7 Article

Targeted discovery of quantitative trait loci for resistance to northern leaf blight and other diseases of maize

期刊

THEORETICAL AND APPLIED GENETICS
卷 123, 期 2, 页码 307-326

出版社

SPRINGER
DOI: 10.1007/s00122-011-1585-9

关键词

-

资金

  1. CGIAR
  2. McKnight Foundation
  3. USDA-ARS
  4. Bill & Melinda Gates Foundation
  5. Ministry of Education, Taiwan

向作者/读者索取更多资源

To capture diverse alleles at a set of loci associated with disease resistance in maize, heterogeneous inbred family (HIF) analysis was applied for targeted QTL mapping and near-isogenic line (NIL) development. Tropical maize lines CML52 and DK888 were chosen as donors of alleles based on their known resistance to multiple diseases. Chromosomal regions (bins; n = 39) associated with multiple disease resistance (MDR) were targeted based on a consensus map of disease QTLs in maize. We generated HIFs segregating for the targeted loci but isogenic at similar to 97% of the genome. To test the hypothesis that CML52 and DK888 alleles at MDR hotspots condition broad-spectrum resistance, HIFs and derived NILs were tested for resistance to northern leaf blight (NLB), southern leaf blight (SLB), gray leaf spot (GLS), anthracnose leaf blight (ALB), anthracnose stalk rot (ASR), common rust, common smut, and Stewart's wilt. Four NLB QTLs, two ASR QTLs, and one Stewart's wilt QTL were identified. In parallel, a population of 196 recombinant inbred lines (RILs) derived from B73 x CML52 was evaluated for resistance to NLB, GLS, SLB, and ASR. The QTLs mapped (four for NLB, five for SLB, two for GLS, and two for ASR) mostly corresponded to those found using the NILs. Combining HIF- and RIL-based analyses, we discovered two disease QTLs at which CML52 alleles were favorable for more than one disease. A QTL in bin 1.06-1.07 conferred resistance to NLB and Stewart's wilt, and a QTL in 6.05 conferred resistance to NLB and ASR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据