4.5 Article

Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China

期刊

THEORETICAL AND APPLIED CLIMATOLOGY
卷 99, 期 1-2, 页码 149-161

出版社

SPRINGER WIEN
DOI: 10.1007/s00704-009-0129-6

关键词

-

资金

  1. Natural Science Foundation of China [40730632]
  2. Ministry of Science and Technology, China [2006DFA21890]
  3. Chinese Academy of Sciences [Kzcx2-yw-126]

向作者/读者索取更多资源

A statistical downscaling method (SDSM) was evaluated by simultaneously downscaling air temperature, evaporation, and precipitation in Haihe River basin, China. The data used for evaluation were large-scale atmospheric data encompassing daily NCEP/NCAR reanalysis data and the daily mean climate model results for scenarios A2 and B2 of the HadCM3 model. Selected as climate variables for downscaling were measured daily mean air temperature, pan evaporation, and precipitation data (1961-2000) from 11 weather stations in the Haihe River basin. The results obtained from SDSM showed that: (1) the pattern of change in and numerical values of the climate variables can be reasonably simulated, with the coefficients of determination between observed and downscaled mean temperature, pan evaporation, and precipitation being 99%, 93%, and 73%, respectively; (2) systematic errors existed in simulating extreme events, but the results were acceptable for practical applications; and (3) the mean air temperature would increase by about 0.7A degrees C during 2011 similar to 2040; the total annual precipitation would decrease by about 7% in A2 scenario but increase by about 4% in B2 scenario; and there were no apparent changes in pan evaporation. It was concluded that in the next 30 years, climate would be warmer and drier, extreme events could be more intense, and autumn might be the most distinct season among all the changes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据