4.5 Article

Optimization of operating conditions for a double-row tapered roller bearing

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10999-015-9311-4

关键词

Double row tapered roller bearing; Finite element method; Design of experiments; Multiple response surface optimization

向作者/读者索取更多资源

This paper proposes a methodology that combines the Finite Element Method and multiple response surface optimization to search for the optimal operating conditions of a double-row Tapered Roller Bearing (TRB) that has a Preload (P), radial load (F-r), axial load (F-a) and torque (T). Initially, FE models based on a double-row TRB are built and validated in the basis of experimental data and theoretical models. Three of the most important parameters used in the design of TRB were obtained from a simulation of the FE models with a combination of several operating conditions that were previously selected in accordance with a design of experiments. The design parameters are: contact stress radio for both rows of rollers (S-1 and S-2), maximum deformation of the outer raceway (alpha(max)), and the difference between the gaps of the inner raceways (Delta delta) or misalignment. Based on the results of the FE simulations, quadratic regressions models are generated that use the response surface method to predict the design parameters when new operating condition are applied. Then, a multi-response optimization study based on these models and using desirability functions is conducted. It is concluded that the accuracy of the results demonstrates that this methodology may be used to search for the optimal operating condition in a double-row TRB.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据