4.5 Article

Locating and quantifying geological uncertainty in three-dimensional models: Analysis of the Gippsland Basin, southeastern Australia

期刊

TECTONOPHYSICS
卷 546, 期 -, 页码 10-27

出版社

ELSEVIER
DOI: 10.1016/j.tecto.2012.04.007

关键词

Stratigraphic variability; Gippsland Basin; Implicit 3D modelling; Uncertainty grids; Model suite exploration; Structural geology

资金

  1. Geoscience Victoria, Department of Primary Industries, Melbourne, Australia
  2. Society of Economic Geologists
  3. Hugo Dummett Memorial Fund

向作者/读者索取更多资源

Geological three-dimensional (3D) models are constructed to reliably represent a given geological target. The reliability of a model is heavily dependent on the input data and is sensitive to uncertainty. This study examines the uncertainty introduced by geological orientation data by producing a suite of implicit 3d models generated from orientation measurements subjected to uncertainty simulations. The resulting uncertainty associated with different regions of the geological model can be located, quantified and visualised, providing a useful method to assess model reliability. The method is tested on a natural geological setting in the Gippsland Basin, southeastern Australia, where modelled geological surfaces are assessed for uncertainty. The concept of stratigraphic variability is introduced and analysis of the input data is performed using two uncertainty visualisation methods. Uncertainty visualisation through stratigraphic variability is designed to convey the complex concept of 3D model uncertainty to the geoscientist in an effective manner. Uncertainty analysis determined that additional seismic information provides an effective means of constraining modelled geology and reducing uncertainty in regions proximal to the seismic sections. Improvements to the reliability of high uncertainty regions achieved using information gathered from uncertainty visualisations are quantified in a comparative case study. Uncertainty in specific model locations is identified and attributed to possible disagreements between seismic and isopach data. Further improvements to and additional sources of data for the model are proposed based on this information. Finally, a method of introducing stratigraphic variability values as geological constraints for geophysical inversion is presented. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据