4.5 Article

The role of footwall deformation and denudation in controlling cooling age patterns of detachment systems: An application to the Kongur Shan extensional system in the Eastern Pamir, China

期刊

TECTONOPHYSICS
卷 496, 期 1-4, 页码 28-43

出版社

ELSEVIER
DOI: 10.1016/j.tecto.2010.10.003

关键词

Thermal model; Pamir; Kongur Shan; Thermochronology

资金

  1. National Science Foundation [EAR-0126122, EAR-0911598]

向作者/读者索取更多资源

Determining the relationship between deformation and exhumation history in the footwall rocks of major low-angle normal faults (i.e., detachment faults) provides a way to quantify different models of continental extension. Although pressure-temperature-time (P-T-t) datasets are commonly used to infer magnitude and rates of slip across detachment faults, correct use of these datasets requires a sound understanding of coupling effects between footwall deformation and advection of isotherms on the distribution of cooling ages. In this study we present thermo-kinematic modeling results which examine the relationship between different footwall kinematic models, erosion, and the spatial distribution of muscovite and biotite 40Ar/39Ar cooling ages. Our results show that large magnitudes of footwall erosion during normal faulting significantly affect cooling age patterns as footwall rocks at different distances from the fault surface pass through different thermal gradients. We apply our modeling results to simulating muscovite and biotite cooling-age patterns from the footwall of the Cenozoic Kongur Shan normal fault system in the Pamir. Previous studies had interpreted a documented similar to 5-fold increase in cooling rate at similar to 2 Ma to indicate an increase in exhumation rate during the Quaternary. However, our results show that the observed cooling age patterns and increase in cooling rate can be produced by a constant exhumation rate over the last 7 Ma due to the effect of changes in the rate of isotherm advection during exhumation. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据