4.6 Article

The African landscape through space and time

期刊

TECTONICS
卷 33, 期 6, 页码 898-935

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2013TC003479

关键词

-

资金

  1. BP-Cambridge Margins Project

向作者/读者索取更多资源

It is generally accepted that Cenozoic epeirogeny of the African continent is moderated by convective circulation of the mantle. Nevertheless, the spatial and temporal evolution of Africa's basin-and-swell physiography is not well known. Here we show how continental drainage networks can be used to place broad constraints on the pattern of uplift through space and time. First, we assemble an inventory of 710 longitudinal river profiles that includes major tributaries of the 10 largest catchments. River profiles have been jointly inverted to determine the pattern of uplift rate as a function of space and time. Our inverse model assumes that shapes of river profiles are controlled by uplift rate history and modulated by erosional processes, which can be calibrated using independent geologic evidence (e.g., marine terraces, volcanism and thermochronologic data). Our results suggest that modern African topography started to develop similar to 30 Myr ago when volcanic swells appeared in North and East Africa. During the last 15-20 Myr, subequatorial Africa was rapidly elevated, culminating in the appearance of three large swells that straddle southern and western coasts. Our results enable patterns of sedimentary flux at major deltas to be predicted and tested. We suggest that the evolution of drainage networks is dominated by rapid upstream advection of signals produced by a changing pattern of regional uplift. An important corollary is that, with careful independent calibration, these networks might act as useful tape recorders of otherwise inaccessible mantle processes. Finally, we note that there are substantial discrepancies between our results and published dynamic topographic predictions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据