4.5 Article

A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data

期刊

TECHNOMETRICS
卷 53, 期 4, 页码 366-378

出版社

AMER STATISTICAL ASSOC
DOI: 10.1198/TECH.2011.09141

关键词

Computer experiment; Matrix inverse approximation; Regularization

资金

  1. Natural Sciences and Engineering Research Council of Canada

向作者/读者索取更多资源

For many expensive deterministic computer simulators, the outputs do not have replication error and the desired metamodel (or statistical emulator) is an interpolator of the observed data. Realizations of Gaussian spatial processes (GP) are commonly used to model such simulator outputs. Fitting a GP model to n data points requires the computation of the inverse and determinant of n x n correlation matrices, R, that are sometimes computationally unstable due to near-singularity of R. This happens if any pair of design points are very close together in the input space. The popular approach to overcome near-singularity is to introduce a small nugget (or jitter) parameter in the model that is estimated along with other model parameters. The inclusion of a nugget in the model often causes unnecessary over-smoothing of the data. In this article, we propose a lower bound on the nugget that minimizes the over-smoothing and an iterative regularization approach to construct a predictor that further improves the interpolation accuracy. We also show that the proposed predictor converges to the GP interpolator.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据