4.7 Article

Nonenzymatic electrochemical glucose sensor based on novel Pt-Pd nanoflakes

期刊

TALANTA
卷 99, 期 -, 页码 1062-1067

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.talanta.2012.07.039

关键词

Pt-Pd nanoflakes; Screen-printed gold film electrode; Glucose; Nonenzymatic electrochemical sensor

资金

  1. Science and Technology Commission of Shanghai Municipality [10dz2220500, 10391901600]
  2. Ministry of Education of the People's Republic of China [WK1014051]

向作者/读者索取更多资源

The sluggish kinetic-controlled glucose oxidation reaction on Pt electrodes is well recognized as the most critical issue that blocks the development and commercialization of enzyme-free glucose sensors, and increasing attention is being focused on improving the analytical performances of these nonenzymatic sensors through exploring new Pt-based catalysts. In the present research, we synthesized novel Pt-Pd nanoflakes (Pt-Pd NFs) with three-dimensional architectures on a homemade screen-printed gold film electrode (SPGFE) substrate using a facile electrochemical deposition without any template, and further investigated the properties of the as-fabricated Pt-Pd NFs/SPGFE for enzymeless glucose detection. The results reveal that the proposed Pt-Pd nanostructure can provide preeminent electrocatalytic activity and excellent selectivity for enzyme-free glucose sensing under simulative physiological conditions, mainly attributing to its attractive structure, large active surface and appropriate applied potential. The resulting Pt-Pd NFs/SPGFE offers linear current responses for glucose with the concentration upper limit to 16 mM. The obtained sensitivity is calculated to be as high as 48.0 mu A cm(-2) mM(-1) in the presence of 0.15 M chlorides ions, and practical applications for blood sample analysis are also demonstrated. The proposed Pt-Pd structure is considered as a great potential building block for the fabrication of nonenzymatic electrochemical glucose sensors. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据