4.2 Article

Phylogeny and temporal divergence of the seagrass family Zosteraceae using one nuclear and three chloroplast loci

期刊

SYSTEMATICS AND BIODIVERSITY
卷 11, 期 3, 页码 271-284

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/14772000.2013.821187

关键词

barcoding; chloroplast DNA; Heterozostera; ITS1; molecular clock; molecular phylogenetics; seagrass; Zostera; Zosteraceae

向作者/读者索取更多资源

Seagrasses are among the most productive habitats in the marine realm, performing several crucial physical and biological ecosystem services. One group of seagrasses is the family Zosteraceae, which includes three to four genera and >20 species inhabiting temperate waters of both the northern and southern hemisphere. Species delineation depends on the type of data used, ranging from morphological to molecular. The main goal of this study was to better understand the evolution and divergence within the family, using a broad taxon sampling (>90 individuals) representing all species across the entire biogeographical range in both hemispheres and a four-locus approach (ITS1, matK, rbcL, psbA-trnH). The concatenated four-locus analysis supported earlier studies showing four genera in the family: Phyllospadix, Zostera, Nanozostera and Heterozostera. Four species were resolved within the genus Zostera, four within Nanozostera and two within Heterozostera. No distinction was revealed between H. nigracaulis (Australia) and H. chiliensis (Chile), suggesting a very recent introduction to Chile. A time-calibrated phylogeny using the rbcL gene revealed an early divergence of Zostera-Nanozostera/Heterozostera at 14.4 Ma, followed by a late Miocene radiation of Nanozostera-Heterozostera at 6.4 Ma, and the H. polychalymas-H. nigracaulis/tasmanica/chiliensis split at 2.3 Ma. Zostera asiatica diverged from other species of Zostera at 4.6 Ma. Phylogenetic analyses indicated that matK was the most informative single locus, whereas psbA-trnH (a widely used barcoding locus) was unable to resolve any entities within the Zosteraceae. A commonly used barcoding combination for plants, rbcL/matK, distinguished all genera, but was unable to resolve several species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据