4.6 Article

Phylogenetic Signal and Noise: Predicting the Power of a Data Set to Resolve Phylogeny

期刊

SYSTEMATIC BIOLOGY
卷 61, 期 5, 页码 835-849

出版社

OXFORD UNIV PRESS
DOI: 10.1093/sysbio/sys036

关键词

Experimental design; noise; phylogeny; polytomy; power; resolution; saturation; signal

资金

  1. Yale University

向作者/读者索取更多资源

A principal objective for phylogenetic experimental design is to predict the power of a data set to resolve nodes in a phylogenetic tree. However, proactively assessing the potential for phylogenetic noise compared with signal in a candidate data set has been a formidable challenge. Understanding the impact of collection of additional sequence data to resolve recalcitrant internodes at diverse historical times will facilitate increasingly accurate and cost-effective phylogenetic research. Here, we derive theory based on the fundamental unit of the phylogenetic tree, the quartet, that applies estimates of the state space and the rates of evolution of characters in a data set to predict phylogenetic signal and phylogenetic noise and therefore to predict the power to resolve internodes. We develop and implement a Monte Carlo approach to estimating power to resolve as well as deriving a nearly equivalent faster deterministic calculation. These approaches are applied to describe the distribution of potential signal, polytomy, or noise for two example data sets, one recent (cytochrome c oxidase I and 28S ribosomal rRNA sequences from Diplazontinae parasitoid wasps) and one deep (eight nuclear genes and a phylogenomic sequence for diverse microbial eukaryotes including Stramenopiles, Alveolata, and Rhizaria). The predicted power of resolution for the loci analyzed is consistent with the historic use of the genes in phylogenetics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据