4.5 Article

The influence of device physics on organic magnetoresistance

期刊

SYNTHETIC METALS
卷 173, 期 -, 页码 10-15

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.synthmet.2012.11.017

关键词

Organic magnetoresistance; Device physics; Modelling; Spintronics

资金

  1. Dutch Technology Foundation (STW), which is part of the Netherlands Organization for Scientic Research (NWO)

向作者/读者索取更多资源

In order to explain the surprisingly large, low field organic magnetoresistance (OMAR), several microscopic mechanisms have been proposed recently, but their effect on the polaron transport through a realistic device is relatively unknown. Here we study the effect of device physics on all proposed mechanisms, using a numerical drift-diffusion simulation method. We implement the local magnetic field dependent reactions via a magnetic field dependent recombination, mobility and triplet formation rate. Furthermore, a novel approach is used where we keep track of the subsequent particles formed from these reactions, including excitons and trions. We find that even in the most straightforward device structure sign changes can occur due to device physics. Especially the transition from a diffusion dominated to a drift dominated current near the built-in voltage plays a crucial role for understanding organic magnetoresistance. Finally, we conclude that the shape of the magnetocurrent as a function of voltage can be used as a fingerprint for the underlying dominant microscopic mechanism governing OMAR in a device. (c) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据