4.5 Article

Electrodeposition of a highly adherent and thermally stable polypyrrole coating on steel from aqueous polyphosphate solution

期刊

SYNTHETIC METALS
卷 159, 期 13, 页码 1247-1254

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.synthmet.2009.02.015

关键词

Polypyrrole; Polyphosphate; Electrodeposition; Steel; Thermal stability; Composite

向作者/读者索取更多资源

Electrochemical deposition of polypyrrole (PPy) on steel surface has been carried out from an aqueous polyphosphate medium using constant potential coulometry (CPC) and cyclic voltammeter (CV), and the adherence, anticorrosion property and thermal stability of the coated material have been studied. Open circuit potential (OCP) measurements were carried out in a 3.5% NaCl solution. The high OCPs maintained for a period of 40 days suggest that polyphosphate-doped PPy (PPy/PP) retains its oxidative state and provide good corrosion protection for SS-304. It seems that, the large polyphosphate counter-ion prevents the ingress of chloride ions much better than other dopants reported elsewhere. The amount of polypyrrole formed on the steel surface increased with electrodeposition time, monomer concentration and applied potential. However, the effect of potential was higher than the effects of either monomer concentration or deposition time. Also, the effect of electrolyte concentration on the polymer formation was insignificant. Scanning electron microscopy (SEM), however, showed that PPy surface morphology was affected by polyphosphate concentration. Very smooth, compact and adherent PPy films with significantly smaller globules were obtained from solutions with high concentration of polyphosphate. Thermogravimetric analysis of the coated material indicated that PPy/PP has excellent thermal stability at temperatures up to 700 degrees C, much higher than other conductive polymer coatings cited. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据