4.3 Article

Effects of Genic Base Composition on Growth Rate in G plus C-rich Genomes

期刊

G3-GENES GENOMES GENETICS
卷 5, 期 6, 页码 1247-1252

出版社

GENETICS SOCIETY AMERICA
DOI: 10.1534/g3.115.016824

关键词

base composition; natural selection; mutational patterns; microbial genomes

资金

  1. NIH [GM0108657]

向作者/读者索取更多资源

The source and significance of the wide variation in the genomic base composition of bacteria have been a matter of continued debate. Although the variation was originally attributed to a strictly neutral process, i.e., species-specific differences in mutational patterns, recent genomic comparisons have shown that bacteria with G+C-rich genomes experience a mutational bias toward A+T. This difference between the mutational input to a genome and its overall base composition suggests the action of natural selection. Here, we examine if selection acts on G+C contents in Caulobacter crescentus and Pseudomonas aeruginosa, which both have very G+C-rich genomes, by testing whether the expression of gene variants that differ only in their base compositions at synonymous sites affects cellular growth rates. In C. crescentus, expression of the more A+T-rich gene variants decelerated growth, indicating that selection on genic base composition is, in part, responsible for the high G+C content of this genome. In contrast, no comparable effect was observed in P. aeruginosa, which has similarly high genome G+C contents. Selection for increased genic G+C-contents in C. crescentus acts independently of the species-specific codon usage pattern and represents an additional selective force operating in bacterial genomes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据