4.0 Article

Changes in Dynorphin Immunoreactivity but Unaltered Density of Enkephalin Immunoreactive Neurons in Basal Ganglia Nuclei of Genetically Dystonic Hamsters

期刊

SYNAPSE
卷 65, 期 11, 页码 1196-1203

出版社

WILEY
DOI: 10.1002/syn.20959

关键词

dystonia; dyskinesia; movement disorder; animal models; basal ganglia

资金

  1. Deutsche Forschungsgemeinschaft [Ri 845/1-3]

向作者/读者索取更多资源

Dystonia is regarded as a basal ganglia disorder. In the dt(sz) hamster, a genetic animal model of paroxysmal dystonia, previous studies demonstrated a reduced density of striatal GABAergic interneurons which inhibit striatal GABAergic projection neurons. Although the disinhibition of striatal GABAergic projection neurons was evidenced in the dt(sz) hamster, alterations in their density have not been elucidated so far. Therefore, in the present study, the density of striatal methionin-(met-) enkephalin (ENK) immunoreactive GABAergic neurons, which project to the globus pallidus (indirect pathway), was determined in dt(sz) and control hamsters to clarify a possible role of an altered ratio between striatal interneurons and projection neurons. Furthermore, the immunoreactivity of dynorphin A (DYN), which is expressed in entopeduncular fibers of striatal neurons of the direct pathway, was verified by gray level measurements to illuminate the functional relevance of an enhanced striato-entopeduncular neuronal activity previously found in dt(sz) hamsters. While the density of striatal ENK immunoreactive (ENK+) neurons did not significantly differ between mutant and control hamsters, there was a significantly enhanced ratio between the DYN immunoreactive area and the whole area of the EPN in dt(sz) hamsters compared to controls. These results support the hypothesis that a disbalance between a reduced density of striatal interneurons and an unchanged density of striatal projection neurons causes imbalances in the basal ganglia network. The consequentially enhanced striato-entopeduncular inhibition leads to an already evidenced reduced activity and an altered firing pattern of entopeduncular neurons in the dt(sz) hamster. Synapse 65:1196-1203, 2011. (C) 2011 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据