4.0 Article

Nitric Oxide Signaling via cGMP-Stimulated Phosphodiesterase in Striatal Neurons

期刊

SYNAPSE
卷 64, 期 6, 页码 460-466

出版社

WILEY
DOI: 10.1002/syn.20750

关键词

striatum; cyclic AMP; cyclic GMP; nitric oxide synthase; dopamine

资金

  1. Canadian Institutes of Health Research
  2. Canadian Stroke Network

向作者/读者索取更多资源

Nitric oxide (NO) acts in the nervous system to activate guanylyl cyclase and increase cGMP. One target for cGMP appears to be the cGMP-stimulated phosphodiesterase (PDE2A), which is widely expressed in the brain and provides a molecular mechanism for NO to regulate cAMP levels. We have found that PDE2A is highly expressed in the medium spiny neurons of the striatum, which project to the pallidum and substantia nigra. These cells express dopamine-stimulated adenylyl cyclase, and we have found that increases in cAMP in these neurons, produced by activation of the D1-type dopamine receptor, are dramatically enhanced by the general phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine and the PDE2A-selective inhibitor erythro-p-(2-hydroxyl-3-nonyl)adenine (EHNA). These results indicate that PDE2A plays a major role in regulating dopamine-stimulated cAMP production in striatal neurons. EHNA also enhances NO-induced increases in striatal cGMP. In addition, dopamine appears to act via another receptor, activated by the agonist SKF83959, to increase striatal cGMP in a NO-dependent manner. Together, these observations indicate that striatal NO producing interneurons can act via the PDE2A in the medium spiny neurons to regulate the cAMP response to dopamine stimulation. Synapse 64:460-466, 2010. (C) 2010 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据