4.0 Article Proceedings Paper

Thin-layer chromatographic analysis of lumichrome, riboflavin and indole acetic acid in cell-free culture filtrate of Psoralea nodule bacteria grown at different pH, salinity and temperature regimes

期刊

SYMBIOSIS
卷 48, 期 1-3, 页码 173-181

出版社

SPRINGER
DOI: 10.1007/BF03179996

关键词

Lumichrome; environmental stress; Psoralea species; signal molecules

向作者/读者索取更多资源

Using thin-layer chromatography, 16 bacterial isolates from root nodules of 8 different Psoralea species were quantitatively assessed for their exudation of the metabolites lumichrome, riboflavin and IAA in response to pH, salinity and temperature. Our data showed that the bacterial strains tested differed in their levels of secretion of the three metabolites. For example, strain AS2 produced significantly greater amounts of lumichrome at both pH 5.1 and 8.1, while strains RT1 and P1 produced more lumichrome per cell at only pH 8.1. Strains AP1 and RP2 also produced more riboflavin atpH 5.1 than at pH 8.1; conversely strain RT1 secreted more riboflavin at pH 8.1 than at pH 5.1. Two P. repens strains (RP1 and RP2) isolated from very saline environments close to the Indian Ocean produced significant levels of lumichrome and riboflavin at both low and high salinity treatments. However, strains AC1 and L1 (from P. aculeata and P. laxa) even produced greater amounts of lumichrome and riboflavin at higher salinity (i.e. 34.2 mM NaCl) and probably originated from naturally saline soils. In this study, high acidity and high temperature induced the synthesis and release of high levels of IAA by bacterial cells. In contrast, there was greater strain secretion of lumichrome at lower temperature (10 degrees C) than at high temperature (30 degrees C). The variations in the secretion of lumichrome, riboflavin and IAA by bacterial strains exposed to different pH, salinity and temperature regimes suggest that genes encoding these metabolites are regulated differently by the imposed environmental factors. The data from this study also suggest that natural changes of pH, salinity and/or temperature in plant rhizospheres could potentially elevate the concentrations of lumichrome, riboflavin and IAA in soils. An accumulation of these molecules in the rhizosphere would have consequences for ecosystem functioning as both lumichrome and riboflavin have been reported to act as developmental signals that affect species in all three plant, animal, and microbial kingdoms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据