4.7 Article

Comparison of the mixing state of long-range transported Asian and African mineral dust

期刊

ATMOSPHERIC ENVIRONMENT
卷 115, 期 -, 页码 19-25

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.atmosenv.2015.04.031

关键词

Mineral dust; Sahara Desert; Gobi Desert; Atmospheric processing

资金

  1. Atmospheric Brown Cloud project - United Nations Environmental Programme
  2. National Oceanic and Atmospheric Administration (NOAA)
  3. NSF AGS [0936879]
  4. San Diego Fellowship Foundation
  5. U.S. Environmental Protection Agency PM Center Grant [R832415]
  6. Directorate For Geosciences
  7. Div Atmospheric & Geospace Sciences [0936879] Funding Source: National Science Foundation
  8. EPA [909115, R832415] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Mineral dust from arid regions represents the second largest global source of aerosols to the atmosphere. Dust strongly impacts the radiative balance of the earth's atmosphere by directly scattering solar radiation and acting as nuclei for the formation of liquid droplets and ice nuclei within clouds. The climate effects of mineral dust aerosols are poorly understood, however, due to their complex chemical and physical properties, which continuously evolve during atmospheric transport. This work focuses on characterizing atmospheric mineral dust from the two largest global dust sources: the Sahara Desert in Africa and the Gobi and Taklamakan Deserts in Asia. Measurements of individual aerosol particle size and chemical mixing state were made at El Yunque National Forest, Puerto Rico, downwind of the Sahara Desert, and Gosan, South Korea, downwind of the Gobi and Taklamakan Deserts. In general, the chemical characterization of the individual dust particles detected at these two sites reflected the dominant mineralogy of the source regions; aluminosilicate-rich dust was more common at El Yunque (similar to 91% of El Yunque dust particles vs. similar to 69% of Gosan dust particles) and calcium-rich dust was more common at Gosan (similar to 22% of Gosan dust particles vs. similar to 2% of El Yunque dust particles). Furthermore, dust particles from Africa and Asia were subjected to different transport conditions and atmospheric processing; African dust showed evidence of cloud processing, while Asian dust was modified via heterogeneous chemistry and direct condensation of secondary species. A larger fraction of dust detected at El Yunque contained the cloud-processing marker oxalate ion compared to dust detected at Gosan (similar to 20% vs similar to 9%). Additionally, nearly 100% of dust detected at Gosan contained nitrate, showing it was aged via heterogeneous reactions with nitric acid, compared to only similar to 60% of African dust. Information on the distinct differences in the chemical composition of mineral dust particles, as well as the mechanisms and extent of atmospheric processing, is critical for assessing its impacts on the earth's radiative budget through scattering, absorption, and nucleating cloud droplets and ice crystals. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据