4.2 Article Proceedings Paper

New neutral cesium evaporation chamber and UHV suitcase

期刊

SURFACE AND INTERFACE ANALYSIS
卷 43, 期 1-2, 页码 514-517

出版社

WILEY-BLACKWELL
DOI: 10.1002/sia.3518

关键词

cesium deposition; UHV transport; cesium evaporation system; SIMS; high sensitivity

资金

  1. Fonds National de la Recherche Luxembourg

向作者/读者索取更多资源

It is well known that the use of Cs+ primary ions results in an important increase of the negative ionization probability during SIMS analyses. Moreover, Cs+ bombardment allows working in the MCsx+ mode, which is a widely used technique to reduce the matrix effect. A major drawback of Cs+ primary ion bombardment is that the Cs+ beam serves both for the incorporation of Cs and for the sputtering of the surface. Therefore, the sputtering yield, and consequently the cesium surface concentration, are constricted by the primary bombardment conditions. To overcome this problem, the Cation Mass Spectrometer (CMS), equipped with an evaporator delivering a collimated and adjustable stream of neutral Cs onto the sample, has been developed at the SAM department. By continuous Cs-0 deposition during the SIMS analysis, optimal Cs surface concentrations, and thus optimal ionization probabilities are obtained.([1]) In order to make the Cs-0 deposition technique available for other analysis instruments, a standalone UHV instrument for Cs evaporation prior to SIMS analyses has been developed. Furthermore, a suitcase for the transfer under UHV conditions of the samples in-between the Cs-0 evaporation chamber and the analysis instruments has been designed, to avoid any contaminations. In this work, we present this new Cs-0 evaporation chamber, as well as our new UHV suitcase in terms of their characteristics and handling. Copyright (C) 2010 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据