4.7 Article

The investigation of creep of electroplated Sn and Ni-Sn coating on copper at room temperature by nanoindentation

期刊

SURFACE & COATINGS TECHNOLOGY
卷 203, 期 12, 页码 1609-1617

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.surfcoat.2008.12.007

关键词

Nanoindentation; Creep; Sn; Ni-Sn; Lithium ion battery

资金

  1. The Engineering and Physical Sciences Research Council (EPSRC) through the multiscale modelling initiative

向作者/读者索取更多资源

Sn and Sn-based alloy coatings (such as Ni-Sn) are important electrode materials in lithium ion batteries. The mechanical performance of such coatings is essential because they undergo severe volume change induced stress during charge-discharge cycling. As Ni-Sn and Sn anode materials will operate for long periods under stress during charge-discharge cycling at or near room temperature time-dependent relaxation mechanisms such as creep may take place. In this study, the nanoindentation creep of these materials at room temperature (RT) has been investigated. It was found that the creep very easily reaches exhaustion for Ni-Sn and the copper substrate even at high load holds and thus both exhibit a high stress exponent. For low melting temperature material such as Sn the behaviour is different: the stress exponent obtained at RT is around 3 to 8 which is consistent with conventional creep tests. The creep behaviour of an as-deposited polycrystalline Sn thin film with a rough surface strongly depends on its microstructure which makes the nanoindentation creep analysis much more complex than in single crystal materials or polycrystalline bulk materials with large grain size. The microstructural influence on creep mechanisms in Sn films is highlighted in this paper. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据