4.7 Article

Propagated Perturbations from a Peripheral Mutation Show Interactions Supporting WW Domain Thermostability

期刊

STRUCTURE
卷 26, 期 11, 页码 1474-+

出版社

CELL PRESS
DOI: 10.1016/j.str.2018.07.014

关键词

-

资金

  1. National Science Foundation (NSF), United States
  2. Division of Molecular and Cellular Biosciences (MCB) [MCB-1616741]
  3. National Institutes of Health (NIH), United States
  4. Chemistry Biochemistry Biology Interface [T32-GM075762]

向作者/读者索取更多资源

Inter-residue interactions stabilize protein folds and facilitate allosteric communication. Predicting which interactions are crucial and understanding why remain challenging. We highlight this through studies of a single peripheral mutation (Q33E) on the surface of the Pin1 WW domain that causes an unexpected loss of thermostability. Nuclear magnetic resonance studies attribute the loss to reorganizations of electrostatic and hydrophobic interactions, resulting in propagated conformational perturbations. The propagation demonstrates the cooperative response of Pin1 WW to external perturbations, consistent with its allosteric behavior within Pin1. Microsecond molecular dynamics simulations suggest the wild-type fold relies on couplings between a surface electrostatic network and a highly conserved hydrophobic core; Q33E directly perturbs the former, thereby disrupting the latter. These couplings suggest that predictions of mutation consequences that assume dominance of a single interaction type can be limiting, and highlight challenges in predicting protein mutational landscapes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据