4.7 Article

Improvement of a vibration-based damage detection approach for health monitoring of bolted flange joints in pipelines

期刊

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1475921713479641

关键词

Vibration-based damage detection; bolted joints; bolt loosening; finite element analysis; empirical mode decomposition; remote sensing

资金

  1. Petroleum Research Atlantic Canada (PRAC)
  2. Natural Sciences and Engineering Council of Canada (NSERC)

向作者/读者索取更多资源

Early detection of bolt loosening is a major concern in the oil and gas industry. In this study, a vibration-based health monitoring strategy has been developed for detecting the loosening of bolts in a pipeline's bolted flange joint. Both numerical and experimental studies are conducted to verify the integrity of our implementation as well as of an enhancement developed along with it. Several damage scenarios are simulated by the loosening of the bolts through varying the applied torque on each bolt. An electric impact hammer is used to vibrate (excite) the system in a consistent manner. The induced vibration signals are collected via piezoceramic sensors bonded onto the pipe and flange. These signals are transferred remotely by a wireless data acquisition module and then processed with a code developed in-house in the MATLAB environment. After normalization and filtering of the signals, the empirical mode decomposition is applied to establish an effective energy-based damage index. The assessment of the damage indices thus obtained for the various scenarios verifies the integrity of the proposed methodology for identifying the damage and its progression in bolted joints as well as the major enhancements applied onto the methodology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据