4.3 Article

The role of symmetry in building up zeolite frameworks from layered zeolite precursors having ferrierite and CAS layers

期刊

STRUCTURAL CHEMISTRY
卷 21, 期 2, 页码 385-390

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11224-009-9540-y

关键词

Layered zeolite precursor; MCM-22; Ferrierite; CDO; CAS; NSI

向作者/读者索取更多资源

Layered zeolite precursors represent an emerging class of materials that expand the zeolite field in a new direction and have already produced new intriguing discoveries. One is a new fundamental insight that a zeolite framework can assemble by two pathways, directly in 3-D and via a layered precursor. Also new types of materials such as pillared and delaminated zeolites have been synthesized. Starting with the discovery of MCM-22 precursor in 1990s, other framework structures have now been obtained by topotactic condensation, including classical zeolites such as sodalite and ferrierite. The recent structural diversity observed with FER and CAS layers, which were found to produce two frameworks each, i.e. FER/CDO and CAS/NSI, respectively, are herein rationalized as resulting from the absence of in-plane mirror symmetry. A systematic treatment is envisioned, such as consideration of translational and pseudo-translational interactions in condensation of elementary shapes into close-packed assemblies, providing a blueprint for a general approach to analyze new precursors in the future. Other already documented instances of structural diversity include the presence of both types of packing in one preparation (CAS and NSI) and incomplete pairing of silanols connecting FER layers in ESR-12.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据