4.7 Article

Discrete thickness optimization via piecewise constraint penalization

期刊

STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
卷 51, 期 6, 页码 1247-1265

出版社

SPRINGER
DOI: 10.1007/s00158-014-1210-z

关键词

Constraint penalization; Discrete thickness; Gradient-based optimization

资金

  1. Georgia Institute of Technology

向作者/读者索取更多资源

Structural engineers are often constrained by cost or manufacturing considerations to select member thicknesses from a discrete set of values. Conventional, gradient-free techniques to solve these discrete problems cannot handle large problem sizes, while discrete material optimization (DMO) techniques may encounter difficulties, especially for bending-dominated problems. To resolve these issues, we propose an efficient gradient-based technique to obtain engineering solutions to the discrete thickness selection problem. The proposed technique uses a series of constraints to enforce an effective stiffness-to-mass and strength-to-mass penalty on intermediate designs. In conjunction with these constraints, we apply an exact penalty function which drives the solution towards a discrete design. We utilize a continuation approach to obtain approximate solutions to the discrete thickness selection problem by solving a sequence of relaxed continuous problems with increasing penalization. We also show how this approach can be applied to combined discrete thickness selection and topology optimization design problems. To demonstrate the effectiveness of the proposed technique, we present both compliance and stress-constrained results for in-plane and bending-dominated problems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据