4.7 Article

Towards a space reduction approach for efficient structural shape optimization

期刊

出版社

SPRINGER
DOI: 10.1007/s00158-013-0942-5

关键词

Model reduction; CFD; Diffuse approximation; Space reduction

资金

  1. French National Research Agency (ANR) [ANR-08-COSI-007]

向作者/读者索取更多资源

Shape optimization frequently works with geometries involving several dozen design variables. The high dimensionality itself can be an impediment to efficient optimization. Moreover, a possibly high number of explicit/implicit constraints restrict the design space. Traditional CAD geometric parameterization methods present serious difficulties in expressing these constraints leading to a high failure rate of generating admissible shapes. In this paper, we discuss shape interpolation between admissible instances of finite element/CFD meshes. We present an original approach to automatically generate a hyper-surface locally tangent to the manifold of admissible shapes in a properly chosen linearized space. This permits us to reduce the size of the optimization problem while allowing us to morph exclusively between feasible shapes. To this end, we present a two-level a posteriori mesh parameterization approach for the design domain geometry. We use Principal Component Analysis and Diffuse Approximation to replace the geometry-based variables with the smallest set of variables needed to represent an admissible shape for a chosen precision. We demonstrate this approach in two typical shape optimization problems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据