4.7 Article

Application of topology optimization to design an electric bicycle main frame

期刊

出版社

SPRINGER
DOI: 10.1007/s00158-012-0803-7

关键词

Electric bicycle; Topology optimization design; Dynamic characteristics; Finite element method

资金

  1. National Natural Science Foundation of China [50875010]
  2. National Youth Science Foundation of China [51105018]

向作者/读者索取更多资源

Electric bicycle main frame is the most principal structure, connecting and supporting other various components, while bearing a variety of forces and moments. In this paper the topology optimization technology is applied to generate robust electric bicycle main frame by optimizing the material distribution subject to the constraints and dynamic loads. Geometric, mechanical and finite element models, as well as a flexible coupling dynamic model are constructed. Validity and accuracy of these models are investigated through real-life testing. By applying typical road excitation, dynamic loads of all key points are extracted. A set of forces data is extracted every 0.5 s during the whole simulation, including peak values of these forces. In order to obtain appropriate topology optimization results, the values of two crucial parameters, volume fraction and minimum member size, are discussed respectively. Then the topology optimization of multi-load case is implemented with the objective of minimizing the set of weighted compliances resulting from individual load cases. Results illustrate that element density distribution of the model is optimized with manufacturing constraints of minimum member size control and extrusion constraint. Consequently, the better frame form design of the electric bicycle is obtained. Modal analysis for the original and refined models is performed respectively to evaluate the structure stiffness. The results indicate that this optimization program is effective enough to develop a new electric bicycle frame as a reference for manufacturers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据