4.7 Article

Neuroprotection of Ischemic Postconditioning by Downregulating the Postsynaptic Signaling Mediated by Kainate Receptors

期刊

STROKE
卷 44, 期 7, 页码 -

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/STROKEAHA.113.680181

关键词

cerebral ischemia; ischemic postconditioning; kainate receptors; mixed lineage kinase 3; neuroprotection; postsynaptic density protein-95

资金

  1. National Natural Science Foundation of China [81173030, 30873054]
  2. Major Basic Research Project of Jiangsu Higher Education Institutions [11KJA310005]
  3. Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions
  4. Qing Lan Project of Jiangsu Province

向作者/读者索取更多资源

Background and Purpose-Ischemic postconditioning, a brief episode of ischemia after a prolonged ischemic insult, has been found to reduce the delayed neuronal loss after stroke. However, the mechanisms underlying such endogenous neuroprotective strategy remain obscure. In this study, we try to explore the excitatory postsynaptic signal events associated with neuroprotective effect of ischemic postconditioning. Methods-Global cerebral ischemia was induced for 15 minutes by the 4-vessel occlusion method in male Sprague-Dawley rats. Ischemic postconditioning was conducted 10 minutes later by a single reocclusion for 3 minutes. Results-A severe global cerebral ischemia after 5 days of reperfusion destroyed almost all hippocampal CA1 pyramidal neurons. A brief ischemic postconditioning robustly reduced the neuronal loss after ischemia. Preadministration of phosphoinositide 3-kinase inhibitor LY294002 blocked the neuroprotection of postconditioning, whereas mitogen-activated protein kinase kinase 1 inhibitor PD98059 had no effect. Ischemic postconditioning significantly increased the Akt phosphorylation (Ser473). In addition, postconditioning not only perturbed the binding of postsynaptic density protein-95 with glutamatergic kainate receptor subunit 2 and mixed lineage kinase 3 but also suppressed the downstream activation of mixed lineage kinase 3, mitogen-activated protein kinase kinase 7, and c-Jun N-terminal kinase 3. LY294002, but not PD98059, abolished the postconditioning-induced decreases in the assembly of glutamatergic kainate receptor subunit 2-postsynaptic density protein-95-mixed lineage kinase 3 complex and in the mixed lineage kinase 3-c-Jun N-terminal kinase 3 signaling. Akt inhibitor IV, a specific Akt inhibitor, showed the same effects as LY294002. Conclusions-Ischemic postconditioning protects neurons against stroke by attenuating the postsynaptic glutamatergic kainate receptor subunit 2-postsynaptic density protein-95-mixed lineage kinase 3-c-Jun N-terminal kinase 3 signal cascade via phosphoinositide 3-kinase-Akt pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据