4.7 Article

Delayed Administration of a Small Molecule Tropomyosin-Related Kinase B Ligand Promotes Recovery After Hypoxic-Ischemic Stroke

期刊

STROKE
卷 43, 期 7, 页码 1918-1924

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/STROKEAHA.111.641878

关键词

neurotrophin; small molecule; stroke recovery

资金

  1. National Institute of Neurological Disorders and Stroke [KO8 NS050304]
  2. Stanford Stroke Center
  3. Koret Foundation
  4. Jean Perkins Foundation
  5. Department of Veteran's Affairs

向作者/读者索取更多资源

Background and Purpose-Stroke is the leading cause of long-term disability in the United States, yet no drugs are available that are proven to improve recovery. Brain-derived neurotrophic factor stimulates neurogenesis and plasticity, processes that are implicated in stroke recovery. It binds to both the tropomyosin-related kinase B and p75 neurotrophin receptors. However, brain-derived neurotrophic factor is not a feasible therapeutic agent, and no small molecule exists that can reproduce its binding to both receptors. We tested the hypothesis that a small molecule (LM22A-4) that selectively targets tropomyosin-related kinase B would promote neurogenesis and functional recovery after stroke. Methods-Four-month-old mice were trained on motor tasks before stroke. After stroke, functional test results were used to randomize mice into 2 equally, and severely, impaired groups. Beginning 3 days after stroke, mice received LM22A-4 or saline vehicle daily for 10 weeks. Results-LM22A-4 treatment significantly improved limb swing speed and accelerated the return to normal gait accuracy after stroke. LM22A-4 treatment also doubled both the number of new mature neurons and immature neurons adjacent to the stroke. Drug-induced differences were not observed in angiogenesis, dendritic arborization, axonal sprouting, glial scar formation, or neuroinflammation. Conclusions-A small molecule agonist of tropomyosin-related kinase B improves functional recovery from stroke and increases neurogenesis when administered beginning 3 days after stroke. These findings provide proof-of-concept that targeting of tropomyosin-related kinase B alone is capable of promoting one or more mechanisms relevant to stroke recovery. LM22A-4 or its derivatives might therefore serve as pro-recovery therapeutic agents for stroke. (Stroke. 2012;43:1918-1924.)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据