4.3 Article

Study of Vibration Milling for Improving Surface Finish of Difficult-to-Cut Materials

期刊

出版社

ASSOC MECHANICAL ENGINEERS TECHNICIANS SLOVENIA
DOI: 10.5545/sv-jme.2012.856

关键词

vibration cutting; finite element model; pre-twisted cantilever; axial mode; roughness

资金

  1. Lithuanian Agency of Science, Innovation and Technology for the implementation of EUROSTARS project [E!7288]

向作者/读者索取更多资源

This work studies the influence of high-frequency excitation of a cutting tool during end milling of workpieces made of difficult-to-cut metallic alloys. It is demonstrated that high-frequency vibrations superimposed onto the continuous movement of the tool lead to milling process stabilization with superior surface finish in comparison to conventional machining. A finite element model of the vibration milling tool was built and verified experimentally. The model treats the tool as an elastic pre-twisted structure (mill cutter) characterised by its natural vibration modes. The resonance frequencies of the axial vibration mode of cutters of two different lengths were predicted numerically and subsequently used for excitation of the vibration milling tool during cutting experiments. Qualitative and quantitative characterization of the surface quality of the machined stainless steel and titanium alloys was performed. Measurement results have confirmed that excitation of a specific tool mode is a prerequisite for achieving maximal efficiency of the vibration milling process. Statistical analysis of the collected roughness measurement data identified factors that most significantly contribute to the improved surface finish of the workpieces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据