4.3 Article

Global Criterion Method Based on Principal Components to the Optimization of Manufacturing Processes with Multiple Responses

期刊

出版社

ASSOC MECHANICAL ENGINEERS TECHNICIANS SLOVENIA
DOI: 10.5545/sv-jme.2011.136

关键词

multi-objective optimization; global criterion method; principal component analysis; free machining steel turning

资金

  1. Capes
  2. CNPq
  3. FAPEMIG
  4. Institute of Mechanical Engineering of UNIFEI

向作者/读者索取更多资源

The necessity of efficient and controlled processes has increased the demand by employing optimization methods to the most diverse industrial processes. For these cases, the Global Criterion Method is described in literature as a technique indicated for multi-objective optimizations. However, if the problem presents correlations between the responses, this technique does not consider such information. In this context, the Principal Component Analysis is a multivariate tool that can be used to represent correlated responses by uncorrelated components. Given that to negligence the correlation structure between the responses increases the likelihood of the optimization method in finding an inappropriate optimum point, the objective of this work is to combine the GCM and PCA in a strategy able to deal with problems having multiple correlated responses. For this reason, such strategy was used to optimize the 12L14 free machining steel turning process, characterized as an important machining operation. The optimized responses included the mean roughness, total roughness, cutting time and material removal rate. As input parameters, the cutting speed, feed rate and depth of cut were considered. Response Surface Methodology was employed to build the objective functions. The GCM based on principal components was successfully applied, presenting better practical results and a more appropriate location of the optimal point in comparison to the conventional GCM.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据