4.7 Article

Snow water equivalent prediction using Bayesian data assimilation methods

期刊

出版社

SPRINGER
DOI: 10.1007/s00477-010-0445-5

关键词

Snow modeling; Particle filter; Ensemble Kalman filter; Lake Tahoe; SNOW-17

资金

  1. NOAA-CPPA [NA07OAR4310203]

向作者/读者索取更多资源

Using the U.S. National Weather Service's SNOW-17 model, this study compares common sequential data assimilation methods, the ensemble Kalman filter (EnKF), the ensemble square root filter (EnSRF), and four variants of the particle filter (PF), to predict seasonal snow water equivalent (SWE) within a small watershed near Lake Tahoe, California. In addition to SWE estimation, the various data assimilation methods are used to estimate five of the most sensitive parameters of SNOW-17 by allowing them to evolve with the dynamical system. Unlike Kalman filters, particle filters do not require Gaussian assumptions for the posterior distribution of the state variables. However, the likelihood function used to scale particle weights is often assumed to be Gaussian. This study evaluates the use of an empirical cumulative distribution function (ECDF) based on the Kaplan-Meier survival probability method to compute particle weights. These weights are then used in different particle filter resampling schemes. Detailed analyses are conducted for synthetic and real data assimilation and an assessment of the procedures is made. The results suggest that the particle filter, especially the empirical likelihood variant, is superior to the ensemble Kalman filter based methods for predicting model states, as well as model parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据