4.5 Article

Effects of Oxidative Stress on Mouse Embryonic Stem Cell Proliferation, Apoptosis, Senescence, and Self-Renewal

期刊

STEM CELLS AND DEVELOPMENT
卷 19, 期 9, 页码 1321-1331

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/scd.2009.0313

关键词

-

资金

  1. NIH [HL082731]

向作者/读者索取更多资源

Oxidative stress, associated with either normal metabolism or disease conditions, affects many cellular activities. Most of our knowledge in this field is derived from fully differentiated cells. Embryonic stem cells (ESCs) have attracted enormous attention for their potential applications in cell therapy, but little is known about how the unique properties of ESCs are affected by oxidative stress. We have investigated the effects of oxidative stress induced by H2O2 on several cellular activities of mouse ESCs. Like differentiated cells, ESCs are sensitive to H2O2-induced apoptosis when continuously exposed to H2O2 at the concentrations above 150 mu M. However, unlike differentiated cells, ESCs are resistant to oxidative stress induced senescence. This is demonstrated by the results that when subjected to a short-term sublethal concentration and duration of H2O2 treatment, fibroblasts enter the senescent state with enlarged flattened cell morphology concurrent with increased expression of senescence marker p21. On the contrary, ESCs neither show any sign of senescence nor express p21. Instead, ESCs enter a transient cell cycle arrest state, but they have remarkable recovery capacity to resume the normal cell proliferation rate without losing the ability of self-renewal and pluripotency. Our results further revealed that H2O2 inhibits cell adhesion and the expression of cyclin D1, which are early events proceeding apoptosis and cell cycle arrest. In conclusion, our data suggest that ESCs are sensitive to H2O2 toxicity, but may have unique mechanisms that prevent H2O2-induced senescence and protect self-renewal capacity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据